Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Open Forum Infect Dis ; 9(8): ofac417, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-2319246

ABSTRACT

Background: Patients with lymphoid malignancies are at risk for poor coronavirus disease 2019 (COVID-19)-related outcomes and have reduced vaccine-induced immune responses. Currently, a 3-dose primary regimen of mRNA vaccines is recommended in the United States for immunocompromised hosts. Methods: A prospective cohort study of healthy adults (n = 27) and patients with lymphoid malignancies (n = 94) was conducted, with longitudinal follow-up through completion of a 2- or 3-dose primary mRNA COVID vaccine series, respectively. Humoral responses were assessed in all participants, and cellular immunity was assessed in a subset of participants. Results: The rate of seroconversion (68.1% vs 100%) and the magnitude of peak anti-S immunoglobulin G (IgG) titer (median anti-S IgG = 32.4, IQR = 0.48-75.0 vs median anti-S IgG = 72.6, IQR 51.1-100.1; P = .0202) were both significantly lower in patients with lymphoid malignancies compared to the healthy cohort. However, peak titers of patients with lymphoid malignancies who responded to vaccination were similar to healthy cohort titers (median anti-S IgG = 64.3; IQR, 23.7-161.5; P = .7424). The third dose seroconverted 7 of 41 (17.1%) patients who were seronegative after the first 2 doses. Although most patients with lymphoid malignancies produced vaccine-induced T-cell responses in the subset studied, B-cell frequencies were low with minimal memory cell formation. Conclusions: A 3-dose primary mRNA series enhanced anti-S IgG responses to titers equivalent to healthy adults in patients with lymphoid malignancies who were seropositive after the first 2 doses and seroconverted 17.1% who were seronegative after the first 2 doses. T-cell responses were present, raising the possibility that the vaccines may confer some cell-based protection even if not measurable by anti-S IgG.

2.
Lancet Reg Health West Pac ; 4: 100024, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-2256974
3.
Clin Biochem ; 117: 60-68, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2284244

ABSTRACT

BACKGROUND: Serologic assays for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been proposed to assist with the acute diagnosis of infection, support epidemiological studies, identify convalescent plasma donors, and evaluate vaccine response. METHODS: We report an evaluation of nine serologic assays: Abbott (AB) and Epitope (EP) IgG and IgM, EUROIMMUN (EU) IgG and IgA, Roche anti-N (RN TOT) and anti-S (RS TOT) total antibody, and DiaSorin (DS) IgG. We evaluated 291 negative controls (NEG CTRL), 91 PCR positive (PCR POS) patients (179 samples), 126 convalescent plasma donors (CPD), 27 healthy vaccinated donors (VD), and 20 allogeneic hematopoietic stem cell transplant (HSCT) recipients (45 samples). RESULTS: We observed good agreement with the method performance claims for specificity (93-100%) in NEG CTRL but only 85% for EU IgA. The sensitivity claims in the first 2 weeks of symptom onset was lower (26-61%) than performance claims based on > 2 weeks since PCR positivity. We observed high sensitivities (94-100%) in CPD except for AB IgM (77%), EP IgM (0%). Significantly higher RS TOT was observed for Moderna vaccine recipients then Pfizer (p-values < 0.0001). A sustained RS TOT response was observed for the five months following vaccination. HSCT recipients demonstrated significantly lower RS TOT than healthy VD (p < 0.0001) at dose 2 and 4 weeks after. CONCLUSIONS: Our data suggests against the use of anti-SARS-CoV-2 assays to aid in acute diagnosis. RN TOT and RS TOT can readily identify past-resolved infection and vaccine response in the absence of native infection. We provide an estimate of expected antibody response in healthy VD over the time course of vaccination for which to compare antibody responses in immunosuppressed patients.


Subject(s)
COVID-19 , Humans , COVID-19/diagnosis , SARS-CoV-2 , Sensitivity and Specificity , Antibodies, Viral , Immunoglobulin G , COVID-19 Serotherapy , Immunoglobulin M , Immunoglobulin A , COVID-19 Testing
4.
Clin Lab Med ; 42(1): 111-128, 2022 03.
Article in English | MEDLINE | ID: covidwho-2130428

ABSTRACT

As new public health challenges relating to COVID-19 emerge, such as variant strains, waning vaccine efficacy over time, and decreased vaccine efficacy for special populations (immunocompromised hosts), it is important to determine a correlate of protection (CoP) to allow accurate bridging studies for special populations and against variants of concern. Large-scale phase 3 clinical trials are inefficient to rapidly assess novel vaccine candidates for variant strains or special populations, because these trials are slow and costly. Defining a practical CoP will aid in efficiently conducting future assessments to further describe protection for individuals and on a population level for surveillance.


Subject(s)
COVID-19 , Vaccines , Antibody Formation , COVID-19 Vaccines , Humans , SARS-CoV-2
5.
Clin Infect Dis ; 75(1): e920-e923, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2008524

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 messenger RNA vaccine-induced humoral response and reactogenicity profile are described in allogeneic hematopoietic stem cell transplant (HSCT) recipients. Findings showed that 75.0% (by Simoa assay) or 80.0% (by Roche assay) of the HSCT cohort had a positive antibody response on series completion, compared with 100% in the healthy cohort.


Subject(s)
COVID-19 , Hematopoietic Stem Cell Transplantation , mRNA Vaccines , COVID-19/prevention & control , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , SARS-CoV-2 , Vaccines , Vaccines, Synthetic , mRNA Vaccines/adverse effects
6.
Open forum infectious diseases ; 2022.
Article in English | EuropePMC | ID: covidwho-1999431

ABSTRACT

Background Patients with lymphoid malignancies are at risk for poor COVID-19 related outcomes and have reduced vaccine-induced immune responses. Currently a three-dose primary regimen of mRNA vaccines is recommended in the U.S. for immunocompromised hosts. Methods A prospective cohort study of healthy adults (n = 27) and patients with lymphoid malignancies (n = 94) was conducted, with longitudinal follow-up through completion of a two or three-dose primary mRNA COVID vaccine series, respectively. Humoral responses were assessed in all participants, and cellular immunity in a subset of participants. Results The rate of seroconversion (68.1% v. 100%) and the magnitude of peak anti-S IgG titer (median anti-S IgG 32.4, IQR 0.48-75.0 v. 72.6, IQR 51.1-100.1;p = 0.0202) were both significantly lower in patients with lymphoid malignancies as compared to the healthy cohort. However, peak titers of patients with lymphoid malignancies who responded to vaccination were similar to healthy cohort titers (median anti-S IgG 64.3, IQR 23.7 - 161.5, p = 0.7424). The third dose seroconverted 7/41 (17.1%) patients who were seronegative after the first two doses. Although most patients with lymphoid malignancies produced vaccine-induced T-cell responses in the subset studied, B-cell frequencies were low with minimal memory cell formation. Conclusions A three-dose primary mRNA series enhanced anti-S IgG responses to titers equivalent to healthy adults in patients with lymphoid malignancies who were seropositive after the first two doses and seroconverted 17.1% who were seronegative after the first two doses. T-cell responses were present, raising the possibility that the vaccines may confer some cell-based protection even if not measurable by anti-S IgG.

7.
Rev Soc Bras Med Trop ; 55: e0607, 2022.
Article in English | MEDLINE | ID: covidwho-1987219

ABSTRACT

BACKGROUND: The number of deaths and people infected with coronavirus disease 2019 (COVID-19) in Brazil has steadily increased in the first few months of the pandemic. Despite the underreporting of coronavirus cases by government agencies across the country, São Paulo has the highest rate among all Brazilian states. METHODS: To identify the highest-risk municipalities during the initial outbreak, we utilized daily confirmed case data from official reports between February 25 and May 5, 2020, which were aggregated to the municipality level. A prospective space-time scan statistic was conducted to detect active clusters in three different time periods. RESULTS: Our findings suggest that approximately 4.6 times more municipalities belong to a significant space-time cluster with a relative risk (RR) > 1 on May 5, 2020. CONCLUSIONS: Our study demonstrated the applicability of the space-time scan statistic for the detection of emerging clusters of COVID-19. In particular, we identified the clusters and RR of municipalities in the initial months of the pandemic, explaining the spatiotemporal patterns of COVID-19 transmission in the state of São Paulo. These results can be used to improve disease monitoring and facilitate targeted interventions.


Subject(s)
COVID-19 , Brazil/epidemiology , Cities , Disease Outbreaks , Humans , Pandemics
8.
Ann Intern Med ; 175(9): 1258-1265, 2022 09.
Article in English | MEDLINE | ID: covidwho-1924597

ABSTRACT

BACKGROUND: Immunoassays for determining past SARS-CoV-2 infection have not been systematically evaluated in vaccinated persons in comparison with unvaccinated persons. OBJECTIVE: To evaluate antinucleocapsid antibody (anti-N Ab) seropositivity in mRNA-1273 (Moderna) vaccinees with breakthrough SARS-CoV-2 infection. DESIGN: Nested substudy of a phase 3 randomized, double-blind, placebo-controlled vaccine efficacy trial. (ClinicalTrials.gov: NCT04470427). SETTING: 99 sites in the United States, July 2020 through March 2021. PARTICIPANTS: Participants were aged 18 years or older, had no known history of SARS-CoV-2 infection, and were at risk for SARS-CoV-2 infection or severe COVID-19. Substudy participants were diagnosed with SARS-CoV-2 infection during the trial's blinded phase. INTERVENTION: 2 mRNA-1273 or placebo injections 28 days apart. MEASUREMENTS: Nasopharyngeal swabs from days 1 and 29 (vaccination days) and from symptom-prompted illness visits were tested for SARS-CoV-2 via polymerase chain reaction (PCR). Serum samples from days 1, 29, and 57 and the participant decision visit (PDV, when participants were informed of treatment assignment; median day 149) were tested for anti-N Abs by the Elecsys immunoassay. RESULTS: Among 812 participants with PCR-confirmed COVID-19 illness during the blinded phase of the trial (through March 2021), seroconversion to anti-N Abs (median of 53 days after diagnosis) occurred in 21 of 52 mRNA-1273 vaccinees (40% [95% CI, 27% to 54%]) versus 605 of 648 placebo recipients (93% [CI, 92% to 95%]). Each 1-log increase in SARS-CoV-2 viral copies at diagnosis was associated with 90% higher odds of anti-N Ab seroconversion (odds ratio, 1.90 [CI, 1.59 to 2.28]). LIMITATION: The scope was restricted to mRNA-1273 vaccinees and the Elecsys assay, the sample size was small, data on Delta and Omicron infections were lacking, and the analysis did not address a prespecified objective of the trial. CONCLUSION: Vaccination status should be considered when interpreting seroprevalence and seropositivity data based solely on anti-N Ab testing. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases of the National Institutes of Health.


Subject(s)
COVID-19 , 2019-nCoV Vaccine mRNA-1273 , COVID-19/prevention & control , COVID-19 Vaccines , Double-Blind Method , Humans , SARS-CoV-2 , Seroepidemiologic Studies , United States , Vaccine Efficacy
9.
Microbiol Spectr ; 10(2): e0021122, 2022 04 27.
Article in English | MEDLINE | ID: covidwho-1752769

ABSTRACT

The use of anti-spike (S) serologic assays as surrogate measurements of SARS-CoV-2 vaccine induced immunity will be an important clinical and epidemiological tool. The characteristics of a commercially available anti-S antibody assay (Roche Elecsys anti-SARS-CoV-2 S) were evaluated in a cohort of vaccine recipients. Levels were correlated with pseudotype neutralizing antibodies (NAb) across SARS-CoV-2 variants. We recruited adults receiving a two-dose series of mRNA-1273 or BNT162b2 and collected serum at scheduled intervals up to 8 months post-first vaccination. Anti-S and NAb levels were measured, and correlation was evaluated by (i) vaccine type and (ii) SARS-CoV-2 variant (wild-type, Alpha, Beta, Gamma, and three constructs Day 146*, Day 152*, and RBM-2). Forty-six mRNA vaccine recipients were enrolled. mRNA-1273 vaccine recipients had higher peak anti-S and NAb levels compared with BNT162b2 (P < 0.001 for anti-S levels; P < 0.05 for NAb levels). When anti-S and NAb levels were compared, there was good correlation (all r values ≥ 0.85) in both BNT162b2 and mRNA-1273 vaccine recipients across all evaluated variants; however, these correlations were nonlinear in nature. Lower correlation was identified between anti-S and NAb for the Beta variant (r = 0.88) compared with the wild-type (WT) strain (r = 0.94). Finally, the degree of neutralizing activity at any given anti-S level was lower for each variant compared with that of the WT strain, (P < 0.001). Although the Roche anti-S assay correlates well with NAb levels, this association is affected by vaccine type and SARS-CoV-2 variant. These variables must be considered when interpreting anti-S levels. IMPORTANCE We evaluated anti-spike antibody concentrations in healthy mRNA vaccinated individuals and compared these concentrations to values obtained from pseudotype neutralization assays targeting SARS-CoV-2 variants of concern to determine how well anti-spike antibodies correlate with neutralizing titers, which have been used as a marker of immunity from COVID-19 infection. We found high peak anti-spike concentrations in these individuals, with significantly higher levels seen in mRNA-1273 vaccine recipients. When we compared anti-spike and pseudotype neuralization titers, we identified good correlation; however, this correlation was affected by both vaccine type and variant, illustrating the difficulty of applying a "one size fits all" approach to anti-spike result interpretation. Our results support CDC recommendations to discourage anti-spike antibody testing to assess for immunity after vaccination and cautions providers in their interpretations of these results as a surrogate of protection in COVID-vaccinated individuals.


Subject(s)
COVID-19 , SARS-CoV-2 , 2019-nCoV Vaccine mRNA-1273 , Adult , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , COVID-19/diagnosis , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2/genetics , Vaccines, Synthetic , mRNA Vaccines
10.
Ann Intern Med ; 172(11): 726-734, 2020 06 02.
Article in English | MEDLINE | ID: covidwho-1726732

ABSTRACT

Diagnostic testing to identify persons infected with severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection is central to control the global pandemic of COVID-19 that began in late 2019. In a few countries, the use of diagnostic testing on a massive scale has been a cornerstone of successful containment strategies. In contrast, the United States, hampered by limited testing capacity, has prioritized testing for specific groups of persons. Real-time reverse transcriptase polymerase chain reaction-based assays performed in a laboratory on respiratory specimens are the reference standard for COVID-19 diagnostics. However, point-of-care technologies and serologic immunoassays are rapidly emerging. Although excellent tools exist for the diagnosis of symptomatic patients in well-equipped laboratories, important gaps remain in screening asymptomatic persons in the incubation phase, as well as in the accurate determination of live viral shedding during convalescence to inform decisions to end isolation. Many affluent countries have encountered challenges in test delivery and specimen collection that have inhibited rapid increases in testing capacity. These challenges may be even greater in low-resource settings. Urgent clinical and public health needs currently drive an unprecedented global effort to increase testing capacity for SARS-CoV-2 infection. Here, the authors review the current array of tests for SARS-CoV-2, highlight gaps in current diagnostic capacity, and propose potential solutions.


Subject(s)
Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Betacoronavirus , Biomarkers/blood , COVID-19 , COVID-19 Testing , COVID-19 Vaccines , Clinical Laboratory Techniques , Humans , Pandemics , Point-of-Care Testing , Radiography, Thoracic , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Serologic Tests , Specimen Handling/methods
11.
Clin Infect Dis ; 74(4): 715-718, 2022 03 01.
Article in English | MEDLINE | ID: covidwho-1702854

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins were measured in longitudinal plasma samples collected from 13 participants who received two doses of mRNA-1273 vaccine. Eleven of 13 participants showed detectable levels of SARS-CoV-2 protein as early as day 1 after first vaccine injection. Clearance of detectable SARS-CoV-2 protein correlated with production of immunoglobulin G (IgG) and immunoglobulin A (IgA).


Subject(s)
2019-nCoV Vaccine mRNA-1273 , COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin A , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/blood , Spike Glycoprotein, Coronavirus/genetics
12.
Science ; 375(6578): eabl6251, 2022 01 21.
Article in English | MEDLINE | ID: covidwho-1650842

ABSTRACT

Many studies have examined the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants on neutralizing antibody activity after they have become dominant strains. Here, we evaluate the consequences of further viral evolution. We demonstrate mechanisms through which the SARS-CoV-2 receptor binding domain (RBD) can tolerate large numbers of simultaneous antibody escape mutations and show that pseudotypes containing up to seven mutations, as opposed to the one to three found in previously studied variants of concern, are more resistant to neutralization by therapeutic antibodies and serum from vaccine recipients. We identify an antibody that binds the RBD core to neutralize pseudotypes for all tested variants but show that the RBD can acquire an N-linked glycan to escape neutralization. Our findings portend continued emergence of escape variants as SARS-CoV-2 adapts to humans.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Immune Evasion , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , BNT162 Vaccine/immunology , Betacoronavirus/immunology , COVID-19/immunology , COVID-19/virology , Cross Reactions , Cryoelectron Microscopy , Crystallography, X-Ray , Epitopes , Evolution, Molecular , Humans , Models, Molecular , Mutation , Polysaccharides/analysis , Protein Binding , Protein Domains , Receptors, Coronavirus/chemistry , Receptors, Coronavirus/metabolism , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Pseudotyping
13.
Blood Adv ; 6(7): 2001-2013, 2022 04 12.
Article in English | MEDLINE | ID: covidwho-1603655

ABSTRACT

Infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) engages the inflammasome in monocytes and macrophages and leads to the cytokine storm in COVID-19. Neutrophils, the most abundant leukocytes, release neutrophil extracellular traps (NETs), which have been implicated in the pathogenesis of COVID-19. Our recent study shows that activation of the NLRP3 inflammasome is important for NET release in sterile inflammation. However, the role of neutrophil inflammasome formation in human disease is unknown. We hypothesized that SARS-CoV-2 infection may induce inflammasome activation in neutrophils. We also aimed to assess the localization of inflammasome formation (ie, apoptosis-associated speck-like protein containing a CARD [ASC] speck assembly) and timing relative to NETosis in stimulated neutrophils by real-time video microscopy. Neutrophils isolated from severe COVID-19 patients demonstrated that ∼2% of neutrophils in both the peripheral blood and tracheal aspirates presented ASC speck. ASC speck was observed in neutrophils with an intact poly-lobulated nucleus, suggesting early formation during neutrophil activation. Additionally, 40% of nuclei were positive for citrullinated histone H3, and there was a significant correlation between speck formation and nuclear histone citrullination. Time-lapse microscopy in lipopolysaccharide -stimulated neutrophils from fluorescent ASC reporter mice showed that ASC speck formed transiently and at the microtubule organizing center long before NET release. Our study shows that ASC speck is present in neutrophils from COVID-19 patients with respiratory failure and that it forms early in NETosis. Our findings suggest that inhibition of neutrophil inflammasomes may be beneficial in COVID-19.


Subject(s)
COVID-19 , Extracellular Traps , Animals , Extracellular Traps/metabolism , Humans , Inflammasomes/metabolism , Mice , Neutrophils/metabolism , SARS-CoV-2
14.
Med (N Y) ; 2(9): 1050-1071.e7, 2021 09 10.
Article in English | MEDLINE | ID: covidwho-1482809

ABSTRACT

BACKGROUND: T cells control viral infection, promote vaccine durability, and in coronavirus disease 2019 (COVID-19) associate with mild disease. We investigated whether prior measles-mumps-rubella (MMR) or tetanus-diphtheria-pertussis (Tdap) vaccination elicits cross-reactive T cells that mitigate COVID-19. METHODS: Antigen-presenting cells (APC) loaded ex vivo with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), MMR, or Tdap antigens and autologous T cells from COVID-19-convalescent participants, uninfected individuals, and COVID-19 mRNA-vaccinated donors were co-cultured. T cell activation and phenotype were detected by interferon-γ (IFN-γ) enzyme-linked immunospot (ELISpot) assays and flow cytometry. ELISAs (enzyme-linked immunosorbant assays) and validation studies identified the APC-derived cytokine(s) driving T cell activation. TCR clonotyping and single-cell RNA sequencing (scRNA-seq) identified cross-reactive T cells and their transcriptional profile. A propensity-weighted analysis of COVID-19 patients estimated the effects of MMR and Tdap vaccination on COVID-19 outcomes. FINDINGS: High correlation was observed between T cell responses to SARS-CoV-2 (spike-S1 and nucleocapsid) and MMR and Tdap proteins in COVID-19-convalescent and -vaccinated individuals. The overlapping T cell population contained an effector memory T cell subset (effector memory re-expressing CD45RA on T cells [TEMRA]) implicated in protective, anti-viral immunity, and their detection required APC-derived IL-15, known to sensitize T cells to activation. Cross-reactive TCR repertoires detected in antigen-experienced T cells recognizing SARS-CoV-2, MMR, and Tdap epitopes had TEMRA features. Indices of disease severity were reduced in MMR- or Tdap-vaccinated individuals by 32%-38% and 20%-23%, respectively, among COVID-19 patients. CONCLUSIONS: Tdap and MMR memory T cells reactivated by SARS-CoV-2 may provide protection against severe COVID-19. FUNDING: This study was supported by a National Institutes of Health (R01HL065095, R01AI152522, R01NS097719) donation from Barbara and Amos Hostetter and the Chleck Foundation.


Subject(s)
COVID-19 , Measles , Whooping Cough , COVID-19/prevention & control , Humans , Mumps Vaccine , Receptors, Antigen, T-Cell , Rubella Vaccine , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , T-Lymphocytes
18.
Trans GIS ; 25(5): 2191-2239, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1304139

ABSTRACT

COVID-19 has infected over 163 million people and has resulted in over 3.9 million deaths. Regarding the tools and strategies to research the ongoing pandemic, spatial analysis has been increasingly utilized to study the impacts of COVID-19. This article provides a review of 221 scientific articles that used spatial science to study the pandemic published from June 2020 to December 2020. The main objectives are: to identify the tools and techniques used by the authors; to review the subjects addressed and their disciplines; and to classify the studies based on their applications. This contribution will facilitate comparisons with the body of work published during the first half of 2020, revealing the evolution of the COVID-19 phenomenon through the lens of spatial analysis. Our results show that there was an increase in the use of both spatial statistical tools (e.g., geographically weighted regression, Bayesian models, spatial regression) applied to socioeconomic variables and analysis at finer spatial and temporal scales. We found an increase in remote sensing approaches, which are now widely applied in studies around the world. Lockdowns and associated changes in human mobility have been extensively examined using spatiotemporal techniques. Another dominant topic studied has been the relationship between pollution and COVID-19 dynamics, which enhance the impact of human activities on the pandemic's evolution. This represents a shift from the first half of 2020, when the research focused on climatic and weather factors. Overall, we have seen a vast increase in spatial tools and techniques to study COVID-19 transmission and the associated risk factors.

19.
Clin Interv Aging ; 16: 1223-1230, 2021.
Article in English | MEDLINE | ID: covidwho-1302058

ABSTRACT

PURPOSE: The occurrence and predictors of delirium in older adults hospitalized for coronavirus disease 2019 (COVID-19) have not been well described. Highlighting the association with inflammatory markers may be useful for identifying delirium. This study aimed to determine the prevalence and incidence of delirium and explore its association with the C-reactive protein (CRP). PATIENTS AND METHODS: This cohort study of adults aged 65 and older with a COVID-19 diagnosis took place at an academic healthcare institution between April and May 2020. COVID-19 was diagnosed by positive nasopharyngeal swab. Serum levels of CRP were collected as a marker of systemic inflammation. The primary outcome was the prevalence and incidence of delirium. Delirium was diagnosed primarily during a patient's stay in hospital based on the Diagnostic and Statistical Manual of Mental Disorders Fifth Edition (DSM-5). To ensure that no delirium diagnosis was missed during hospital stay, clinical records were reviewed by clinicians with geriatric medicine training for retrospective diagnoses. RESULTS: A total of 127 patients aged 65 and older were hospitalized with a diagnosis of COVID-19. The median age was 82 years (IQR: 74-88), with 54 (43%) females. Overall, delirium was present in 62 (49%) patients: manifestations of delirium were present on the first day of hospitalization in 53 of these cases (86%), while 9 cases (14%) developed delirium during hospitalization. After controlling for age and sex, the mean CRP value over the first 3 days since arrival was associated with a higher risk of delirium (OR 1.35; 95% CI: 1.01-1.85) for every 50 mg/L increase. CONCLUSION: In this cohort of older adults hospitalized for COVID-19, delirium was highly prevalent. An early increase in CRP levels should raise suspicion about the occurrence of delirium and could improve its diagnosis.


Subject(s)
C-Reactive Protein/analysis , COVID-19/epidemiology , Delirium/blood , Delirium/epidemiology , Aged , Aged, 80 and over , Biomarkers , Cohort Studies , Female , Hospitalization , Humans , Incidence , Inflammation Mediators/blood , Inflammation Mediators/metabolism , Length of Stay , Male , Prevalence , Retrospective Studies , SARS-CoV-2
20.
Cartographica ; 56(1):2-2–13, 2021.
Article in English | ProQuest Central | ID: covidwho-1190279

ABSTRACT

La cartographie de la prévalence et de la propagation des maladies infectieuses n’a jamais été plus cruciale que dans le contexte de la pandémie de COVID-19. Une pléthore de tableaux de bord de SIG en ligne incorporant la fonctionnalité SIG de base ont été créés ;ces tableaux de bord ont servi de plateforme pour le partage rapide de données et la communication d’information en temps réel, facilitant somme toute la prise de décisions. Toutefois, bon nombre de ces tableaux ont été axés uniquement sur la présentation et le contrôle de l’incidence cumulative ou quotidienne des données sur la COVID-19, sans égard à la dimension temporelle. Les auteurs se penchent sur l’utilité des tableaux de bord basés sur les SIG pour cartographier la prévalence de la COVID-19, mais également sur les occasions manquées de mettre l’accent sur le composant temporel de la maladie (cyclicité, saisonnalité). Ils évoquent la possibilité d’un recours aux techniques avancées de géovisualisation pour intégrer le composant temporel aux cartes animées interactives illustrant a) le risque relatif quotidien et le nombre de jours pendant lesquels une zone géographique a été un foyer de contagion, b) le ratio du nombre de cas observés par rapport au nombre de cas prévus dans le temps et c) la dynamique du nombre des décès dans un cube espace-temps. Les auteurs illustrent ces méthodes au moyen des cas de COVID-19 et du nombre des décès aux États-Unis, à l’échelon des comtés, entre le 25 janvier et le 1er octobre 2020. Ils expliquent comment chacune de ces méthodes de visualisation peut faciliter la compréhension d’importants concepts de santé publique appliqués à la pandémie comme le risque, la propagation et le taux de mortalité. Enfin, les auteurs proposent des pistes à envisager pour promouvoir la recherche au carrefour de la visualisation spatiotemporelle et des maladies infectieuses. Mapping the prevalence and spread of infectious diseases has never been more critical than during the COVID-19 pandemic. A plethora of Web-based GIS dashboards have been created that incorporate basic GIS functionality;these dashboards have served as platforms for rapid data sharing and real-time information, ultimately facilitating decision making. However, many of them have merely focused on presenting and monitoring cumulative or daily incidence of COVID-19 data, disregarding the temporal dimension. In this paper, we review the usefulness of GIS-based dashboards for mapping the prevalence of COVID-19, but also missed opportunities to emphasize the temporal component of the disease (cyclicity, seasonality). We suggest that advanced geovisualization techniques can be used to integrate the temporal component in interactive animated maps illustrating (a) the daily relative risk and the number of days a geographic region has been in a disease cluster, (b) the ratio between the observed and expected number of cases over time, and (c) mortality count dynamics in a space–time cube. We illustrate these approaches by using COVID-19 cases and death counts across the U.S. at the county level from 25 January 2020 to 1 October 2020. We discuss how each of these visualization approaches can promote the understanding of important public health concepts applied to the pandemic such as risk, spread, and mortality. Finally, we suggest future avenues to promote research at the intersection of space–time visualization and infectious diseases.

SELECTION OF CITATIONS
SEARCH DETAIL